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I.   INTRODUCTION 

In the second half of the 20th century, a considerable number of studies on fractional calculus were published in the 

engineering literature. In fact, fractional calculus has many applications in physics, mechanics, biology, electrical 

engineering, viscoelasticity, control theory, economics, and other fields [1-18]. There is no doubt that fractional calculus 

has become an exciting new mathematical method to solve diverse problems in mathematics, science, and engineering. 

However, the rules of fractional derivative are not unique. Many authors have given the definition of fractional derivative. 

The commonly used definition is the Riemann-Liouvellie (R-L) definition. Other useful definitions include Caputo 

definition of fractional derivative, Grunwald Letnikov (G-L) fractional derivative, conformable fractional derivative, and 

Jumarie’s modified R-L fractional derivative [19-23]. Because Jumarie type of R-L fractional derivative helps to avoid non-

zero fractional derivative of constant function, it is easier to use this definition to connect fractional calculus with traditional 

calculus.  

In this paper, based on Jumarie type of R-L fractional calculus and a new multiplication of fractional analytic functions, we 

solve the following 𝛼-fractional definite integral: 

                                                               ( 𝐼0
[Γ(𝛼+1)]

1
𝛼

𝛼 ) [ 𝐿𝑛𝛼(1 + 𝑥𝛼)⨂𝛼 [1 + (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

]

⨂𝛼 (−1)

] ,                                                                 

where 0 < 𝛼 ≤ 1, Γ( ) is the gamma function. The exact solution of this fractional definite integrals can be obtained by 

using some techniques. In addition, our result is a generalization of classical calculus result. 

II.   PRELIMINARIES 

At first, we introduce the fractional calculus used in this paper. 

Definition 2.1 ([24]): Let 0 < 𝛼 ≤ 1, and 𝑥0  be a real number. The Jumarie’s modified Riemann-Liouville (R-L) 𝛼-

fractional derivative is defined by 

                                                                         ( 𝐷𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(1−𝛼)

𝑑

𝑑𝑥
∫

𝑓(𝑡)−𝑓(𝑥0)

(𝑥−𝑡)𝛼 𝑑𝑡
𝑥

𝑥0
 ,                                                       (1) 

And the Jumarie type of Riemann-Liouville 𝛼-fractional integral is defined by 
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                                                                           ( 𝐼𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(𝛼)
∫

𝑓(𝑡)

(𝑥−𝑡)1−𝛼 𝑑𝑡
𝑥

𝑥0
 ,                                                                  (2) 

where Γ( ) is the gamma function. 

In the following, some properties of Jumarie type of R-L fractional derivative are introduced. 

Proposition 2.2 ([25]):  If  𝛼, 𝛽, 𝑥0, 𝑐 are real numbers and 𝛽 ≥ 𝛼 > 0, then 

                                                                           ( 𝐷𝑥0 𝑥
𝛼)[(𝑥 − 𝑥0)𝛽] =

Γ(𝛽+1)

Γ(𝛽−𝛼+1)
(𝑥 − 𝑥0)𝛽−𝛼,                                                  (3) 

and 

                                                                                               ( 𝐷𝑥0 𝑥
𝛼)[𝑐] = 0.                                                                                  (4) 

Next, we introduce the definition of fractional analytic function. 

Definition 2.3 ([26]): If 𝑥, 𝑥0, and 𝑎𝑛 are real numbers for all 𝑛, 𝑥0 ∈ (𝑎, 𝑏), and 0 < 𝛼 ≤ 1. If the function 𝑓𝛼: [𝑎, 𝑏] → 𝑅 

can be expressed as an 𝛼-fractional power series, i.e., 𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0  on some open interval containing 

𝑥0, then we say that 𝑓𝛼(𝑥𝛼) is 𝛼-fractional analytic at 𝑥0. Furthermore, if 𝑓𝛼: [𝑎, 𝑏] → 𝑅 is continuous on closed interval 

[𝑎, 𝑏] and it is 𝛼-fractional analytic at every point in open interval (𝑎, 𝑏), then 𝑓𝛼 is called an 𝛼-fractional analytic function 

on [𝑎, 𝑏]. 

In the following, we introduce a new multiplication of fractional analytic functions. 

Definition 2.4 ([27]): Let 0 < 𝛼 ≤ 1 , and 𝑥0  be a real number. If 𝑓𝛼(𝑥𝛼)  and  𝑔𝛼(𝑥𝛼)  are two 𝛼 -fractional analytic 

functions defined on an interval containing  𝑥0 , 

                                                                                   𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0 ,                                                            (5) 

                                                                                  𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0  .                                                           (6) 

Then we define 

                                                                         𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼)  

                                                                   = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0 ⨂𝛼 ∑
𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0   

                                                                   = ∑
1

Γ(𝑛𝛼+1)
(∑ (

𝑛
𝑚

) 𝑎𝑛−𝑚𝑏𝑚
𝑛
𝑚=0 )∞

𝑛=0 (𝑥 − 𝑥0)𝑛𝛼 .                                                  (7) 

Equivalently, 

                                                       𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼) 

                                                 = ∑
𝑎𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛
∞
𝑛=0 ⨂𝛼 ∑

𝑏𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛
∞
𝑛=0   

                                                 = ∑
1

𝑛!
(∑ (

𝑛
𝑚

) 𝑎𝑛−𝑚𝑏𝑚
𝑛
𝑚=0 )∞

𝑛=0 (
1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛

 .                                                      (8) 

Definition 2.5 ([28]): If 0 < 𝛼 ≤ 1, and 𝑓𝛼(𝑥𝛼),  𝑔𝛼(𝑥𝛼) are two 𝛼-fractional analytic functions defined on an interval 

containing 𝑥0 , 

                                             𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼 = ∑

𝑎𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛
∞
𝑛=0

∞
𝑛=0  ,                                  (9) 

                                            𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼 = ∑

𝑏𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛

.∞
𝑛=0

∞
𝑛=0                                   (10) 

The compositions of 𝑓𝛼(𝑥𝛼) and 𝑔𝛼(𝑥𝛼) are defined by 
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                                                        (𝑓𝛼 ∘ 𝑔𝛼)(𝑥𝛼) = 𝑓𝛼(𝑔𝛼(𝑥𝛼)) = ∑
𝑎𝑛

𝑛!
(𝑔𝛼(𝑥𝛼))

⨂𝛼 𝑛∞
𝑛=0 ,                                                 (11) 

and 

                                                        (𝑔𝛼 ∘ 𝑓𝛼)(𝑥𝛼) = 𝑔𝛼(𝑓𝛼(𝑥𝛼)) = ∑
𝑏𝑛

𝑛!
(𝑓𝛼(𝑥𝛼))

⨂𝛼 𝑛∞
𝑛=0 .                                                  (12) 

Definition 2.6 ([29]): Let 0 < 𝛼 ≤ 1. If 𝑓𝛼(𝑥𝛼), 𝑔𝛼(𝑥𝛼) are two 𝛼-fractional analytic functions satisfies 

                                                                (𝑓𝛼 ∘ 𝑔𝛼)(𝑥𝛼) = (𝑔𝛼 ∘ 𝑓𝛼)(𝑥𝛼) =
1

Γ(𝛼+1)
𝑥𝛼.                                                             (13) 

Then 𝑓𝛼(𝑥𝛼), 𝑔𝛼(𝑥𝛼) are called inverse functions of each other. 

Definition 2.7 ([30]): If 0 < α ≤ 1, and 𝑥 is a real variable. The 𝛼-fractional exponential function is defined by 

                                                                𝐸𝛼(𝑥𝛼) = ∑
𝑥𝑛𝛼

Γ(𝑛𝛼+1)
= ∑

1

𝑛!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑛

.∞
𝑛=0

∞
𝑛=0                                                 (14) 

And the 𝛼-fractional logarithmic function 𝐿𝑛𝛼(𝑥𝛼) is the inverse function of 𝐸𝛼(𝑥𝛼). On the other hand, the 𝛼-fractional 

cosine and sine function are defined as follows: 

                                                         𝑐𝑜𝑠𝛼(𝑥𝛼) = ∑
(−1)𝑛𝑥2𝑛𝛼

Γ(2𝑛𝛼+1)
= ∑

(−1)𝑛

(2𝑛)!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2𝑛
∞
𝑛=0

∞
𝑛=0 ,                                        (15) 

and 

                                                   𝑠𝑖𝑛𝛼(𝑥𝛼) = ∑
(−1)𝑛𝑥(2𝑛+1)𝛼

Γ((2𝑛+1)𝛼+1)
= ∑

(−1)𝑛

(2𝑛+1)!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (2𝑛+1)
∞
𝑛=0

∞
𝑛=0  .                              (16) 

Definition 2.8 ([31]): Let 0 < 𝛼 ≤ 1, and 𝑓𝛼(𝑥𝛼), 𝑔𝛼(𝑥𝛼) be two 𝛼-fractional analytic functions. Then (𝑓𝛼(𝑥𝛼))
⨂𝛼 𝑚

=

𝑓𝛼(𝑥𝛼)⨂𝛼 ⋯ ⨂𝛼 𝑓𝛼(𝑥𝛼) is called the 𝑚th power of 𝑓𝛼(𝑥𝛼). On the other hand, if 𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼) = 1, then 𝑔𝛼(𝑥𝛼) is 

called the ⨂𝛼  reciprocal of 𝑓𝛼(𝑥𝛼), and is denoted by (𝑓𝛼(𝑥𝛼))
⨂𝛼 (−1)

. 

Definition 2.9 ([32]): The smallest positive real number 𝑇𝛼 such that 𝐸𝛼(𝑖𝑇𝛼) = 1, is called the period of 𝐸𝛼(𝑖𝑥𝛼). 

Theorem 2.10 ([33]): If  0 < 𝛼 ≤ 1 , then the 𝛼-fractional definite integral 

                                                           ( 𝐼0
[Γ(𝛼+1)∙

𝑇𝛼
8

]

1
𝛼

𝛼 ) [ 𝐿𝑛𝛼(1 + 𝑡𝑎𝑛𝛼(𝑥𝛼))] =
𝑇𝛼

16
∙ 𝐿𝑛𝛼(2).                                             (17) 

III.    MAIN RESULT 

In this section, we solve a special fractional definite integral. 

Theorem 3.1: Let 0 < 𝛼 ≤ 1, then 

                                   ( 𝐼0
[Γ(𝛼+1)]

1
𝛼

𝛼 ) [ 𝐿𝑛𝛼(1 + 𝑥𝛼)⨂𝛼 [1 + (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

]

⨂𝛼 (−1)

] =
𝑇𝛼

16
∙ 𝐿𝑛𝛼(2) .                    (18) 

Proof:  Let  
1

Γ(𝛼+1)
𝑥𝛼 = 𝑡𝑎𝑛𝛼(𝑡𝛼), then 

                     ( 𝐼0
[Γ(𝛼+1)]

1
𝛼

𝛼 ) [ 𝐿𝑛𝛼(1 + 𝑥𝛼)⨂𝛼 [1 + (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

]

⨂𝛼 (−1)

]  
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                 = ( 𝐼0
[Γ(𝛼+1)]

1
𝛼

𝛼 ) [ 𝐿𝑛𝛼(1 + 𝑥𝛼)⨂𝛼 [1 + (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

]

⨂𝛼 (−1)

⨂𝛼 ( 𝐷0 𝑥
𝛼) [

1

Γ(𝛼+1)
𝑥𝛼]]  

                = ( 𝐼0
[Γ(𝛼+1)∙

𝑇𝛼
8

]

1
𝛼

𝛼 ) [ 𝐿𝑛𝛼(1 + 𝑡𝑎𝑛𝛼(𝑡𝛼))⨂𝛼 [1 + (𝑡𝑎𝑛𝛼(𝑡𝛼))
⨂𝛼 2

]
⨂𝛼 (−1)

⨂𝛼 ( 𝐷0 𝑡
𝛼)[𝑡𝑎𝑛𝛼(𝑡𝛼)]]  

               = ( 𝐼0
[Γ(𝛼+1)∙

𝑇𝛼
8

]

1
𝛼

𝛼 ) [ 𝐿𝑛𝛼(1 + 𝑡𝑎𝑛𝛼(𝑡𝛼))⨂𝛼 [(𝑠𝑒𝑐𝛼(𝑡𝛼))
⨂𝛼 2

]
⨂𝛼 (−1)

⨂𝛼 [(𝑠𝑒𝑐𝛼(𝑡𝛼))
⨂𝛼 2

]]  

              = ( 𝐼0

[Γ(𝛼+1)∙
𝑇𝛼
8

]

1
𝛼

𝛼 ) [ 𝐿𝑛𝛼(1 + 𝑡𝑎𝑛𝛼(𝑡𝛼))] 

              =
𝑇𝛼

16
∙ 𝐿𝑛𝛼(2) .  (by Theorem 2.10)                                                                                            Q.e.d. 

IV.   CONCLUSION 

In this paper, based on Jumarie type of R-L fractional calculus and a new multiplication of fractional analytic functions, we 

solve a special fractional definite integral. In fact, our result is a generalization of traditional calculus result. In the future, 

we will continue to use Jumarie’s modified R-L fractional calculus and the new multiplication of fractional analytic 

functions to solve the problems in fractional differential equations and engineering mathematics. 
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